Cross-Lingual Lexico-Semantic Transfer in Language Learning
نویسندگان
چکیده
Lexico-semantic knowledge of our native language provides an initial foundation for second language learning. In this paper, we investigate whether and to what extent the lexico-semantic models of the native language (L1) are transferred to the second language (L2). Specifically, we focus on the problem of lexical choice and investigate it in the context of three typologically diverse languages: Russian, Spanish and English. We show that a statistical semantic model learned from L1 data improves automatic error detection in L2 for the speakers of the respective L1. Finally, we investigate whether the semantic model learned from a particular L1 is portable to other, typologically related languages.
منابع مشابه
English-Persian Plagiarism Detection based on a Semantic Approach
Plagiarism which is defined as “the wrongful appropriation of other writers’ or authors’ works and ideas without citing or informing them” poses a major challenge to knowledge spread publication. Plagiarism has been placed in four categories of direct, paraphrasing (rewriting), translation, and combinatory. This paper addresses translational plagiarism which is sometimes referred to as cross-li...
متن کاملLearning Monolingual Compositional Representations via Bilingual Supervision
Bilingual models that capture the semantics of sentences are typically only evaluated on cross-lingual transfer tasks such as cross-lingual document categorization or machine translation. In this work, we evaluate the quality of the monolingual representations learned with a variant of the bilingual compositional model of Hermann and Blunsom (2014), when viewing translations in a second languag...
متن کاملCross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Resources
Training a POS tagging model with crosslingual transfer learning usually requires linguistic knowledge and resources about the relation between the source language and the target language. In this paper, we introduce a cross-lingual transfer learning model for POS tagging without ancillary resources such as parallel corpora. The proposed cross-lingual model utilizes a common BLSTM that enables ...
متن کاملVector Disambiguation for Translation Extraction from Comparable Corpora
We present a new data-driven approach for enhancing the extraction of translation equivalents from comparable corpora which exploits bilingual lexico-semantic knowledge harvested from a parallel corpus. First, the bilingual lexicon obtained from word-aligning the parallel corpus replaces an external seed dictionary, making the approach knowledge-light and portable. Next, instead of using simple...
متن کاملCross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space Specialisation
Existing approaches to automatic VerbNetstyle verb classification are heavily dependent on feature engineering and therefore limited to languages with mature NLP pipelines. In this work, we propose a novel cross-lingual transfer method for inducing VerbNets for multiple languages. To the best of our knowledge, this is the first study which demonstrates how the architectures for learning word em...
متن کامل